skip to main content


Search for: All records

Creators/Authors contains: "Best, T. Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Robotic knee-ankle prostheses have often fallen short relative to passive microprocessor prostheses in time-based clinical outcome tests. User ambulation endurance is an alternative clinical outcome metric that may better highlight the benefits of robotic prostheses. However, previous studies were unable to show endurance benefits due to inaccurate high-level classification, discretized mid-level control, and insufficiently difficult ambulation tasks. In this case study, we present a phase-based mid-level prosthesis controller which yields biomimetic joint kinematics and kinetics that adjust to suit a continuum of tasks. We enrolled an individual with an above-knee amputation and challenged him to perform repeated, rapid laps of a circuit comprising activities of daily living with both his passive prosthesis and a robotic prosthesis. The participant demonstrated improved endurance with the robotic prosthesis and our mid-level controller compared to his passive prosthesis, completing over twice as many total laps before fatigue and muscle discomfort required him to stop. We also show that time-based outcome metrics fail to capture this endurance improvement, suggesting that alternative metrics related to endurance and fatigue may better highlight the clinical benefits of robotic prostheses. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Powered knee-ankle prostheses can offer benefits over conventional passive devices during stair locomotion by providing biomimetic net-positive work and active control of joint angles. However, many modern control approaches for stair ascent and descent are often limited by time-consuming hand-tuning of user/task-specific parameters, predefined trajectories that remove user volition, or heuristic approaches that cannot be applied to both stair ascent and descent. This work presents a phase-based hybrid kinematic and impedance controller (HKIC) that allows for semi-volitional, biomimetic stair ascent and descent at a variety of step heights. We define a unified phase variable for both stair ascent and descent that utilizes lower-limb geometry to adjust to different users and step heights. We extend our prior data-driven impedance model for variable-incline walking, modifying the cost function and constraints to create a continuously-varying impedance parameter model for stair ascent and descent over a continuum of step heights. Experiments with above-knee amputee participants (N=2) validate that our HKIC controller produces biomimetic ascent and descent joint kinematics, kinetics, and work across four step height configurations. We also show improved kinematic performance with our HKIC controller in comparison to a passive microprocessor-controlled device during stair locomotion. 
    more » « less